Deformations of Hypersurfaces with Nonconstant Alexander Polynomial

نویسندگان

چکیده

Abstract Let $X \subset \mathbf {P}^n$ be an irreducible hypersurface of degree $d\geq 3$ with only isolated semi-weighted homogeneous singularities, such that $\exp (\frac {2\pi i}{k})$ is a zero its Alexander polynomial. Then we show the equianalytic deformation space $X$ not $T$-smooth except for finite list triples $(n,d,k)$. This result captures very classical examples by B. Segre families $6m$ plane curves $6m^2$, $7m^2$, $8m^2$, and $9m^2$ cusps, where $m\geq 3$. Moreover, argue many hypersurfaces nontrivial polynomial are limits constructions spaces. In instances, this description can used to find candidates Alexander-equivalent Zariski pairs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypersurfaces and generalized deformations

The moduli space of generalized deformations of a Calabi-Yau hypersurface is computed in terms of the Jacobian ring of the defining polynomial. The fibers of the tangent bundle to this moduli space carry algebra structures, which are identified using subalgebras of a deformed Jacobian ring.

متن کامل

Deformations of Unbounded Convex Bodies and Hypersurfaces

We study the topology of the space ∂K of complete convex hypersurfaces of R which are homeomorphic to Rn−1. In particular, using Minkowski sums, we construct a deformation retraction of ∂K onto the Grassmannian space of hyperplanes. So every hypersurface in ∂K may be flattened in a canonical way. Further, the total curvature of each hypersurface evolves continuously and monotonically under this...

متن کامل

On Knots with Trivial Alexander Polynomial

We use the 2-loop term of the Kontsevich integral to show that there are (many) knots with trivial Alexander polynomial which don’t have a Seifert surface whose genus equals the rank of the Seifert form. This is one of the first applications of the Kontsevich integral to intrinsically 3-dimensional questions in topology. Our examples contradict a lemma of Mike Freedman, and we explain what went...

متن کامل

The Alexander Polynomial for Tangles

WExpand@expr_D := Expand@expr . w_W ¦ Signature@wD * Sort@wDD; WM@___, 0, ___D = 0; a_ ~WM~ b_ := WExpandADistribute@a ** bD . Ic1_. * w1_WM ** Ic2_. * w2_WM ¦ c1 c2 Join@w1, w2D E; WM@a_, b_, c__D := a ~WM~ WM@b, cD; IM@8<, expr_D := expr; IM@i_, w_WD := If@MemberQ@w, iD, -H-1L^Position@w, iD@@1, 1DD DeleteCases@w, iD, 0D; IM@8is___, i_<, w_WD := IM@8is<, IM@i, wDD; IM@is_List, expr_D := exp...

متن کامل

Zeros of the Alexander Polynomial of Knot

The leading coefficient of the Alexander polynomial of a knot is the most informative element in this invariant, and the growth of orders of the first homology of cyclic branched covering spaces is also a familiar subject. Accordingly, there are a lot of investigations into each subject. However, there is no study which deal with the both subjects in a same context. In this paper, we show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2022

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnac218